

Multiple Phase Flow

Burhan S Abdulrazak, Ph.D. Chemical Engineering Department

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Lecture Notes: The Lockhart-Martinelli Correlation for Multiphase Flow Analysis

Introduction

The **Lockhart-Martinelli correlation** is a widely used empirical approach for analyzing **two-phase flows** in pipes. It provides a method to estimate the pressure drop in a gas-liquid system by relating it to the pressure drop of a single-phase flow. This correlation is especially useful in horizontal and near-horizontal pipelines for predicting the effects of multiphase flow on system performance.

Key Concepts

1. Pressure Drop in Two-Phase Flow

The pressure drop in a two-phase system is influenced by the interaction between gas and liquid phases. The Lockhart-Martinelli correlation simplifies this calculation by introducing a correction factor based on single-phase flow characteristics.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

- 2. Parameters of Interest
- **Two-Phase Pressure Drop** (ΔP_{TP}): The actual pressure drop in the gas-liquid flow.
- Single-Phase Pressure Drops:
 - \circ ΔP_L : Pressure drop if the liquid were flowing alone.
 - \circ ΔP_G : Pressure drop if the gas were flowing alone.
- Lockhart-Martinelli Parameter (X): Represents the ratio of liquid-to-gas frictional pressure drops in single-phase flow.

Lockhart-Martinelli Parameter (X)

The dimensionless parameter X is defined as:

$$X^2 = \frac{\Delta P_L}{\Delta P_G}$$

Where:

- ΔP_L : Frictional pressure drop of liquid alone.
- ΔP_G : Frictional pressure drop of gas alone.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

In terms of flow properties:

$$X^2 = \frac{m_l^2 \rho_g}{m_g^2 \rho_l}$$

Where:

- m'_{l} , m'_{g} : Mass flow rates of liquid and gas.
- ρ_l, ρ_g : Densities of liquid and gas.

Two-Phase Pressure Drop Calculation

The two-phase frictional pressure drop is expressed as:

$$\Delta P_{TP} = \varphi^2 \Delta P_L$$

Where:

- ϕ^2 : Two-phase multiplier for the liquid phase.
- ϕ^2 is a function of X, determined empirically.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Two-Phase Multiplier (ϕ^2) **Relationships:**

The relationship between ϕ^2 and X depends on the flow regime. Typical empirical equations are:

For liquid-dominated flow (X > 1):

$$\phi^2 = 1 + CX + X^2$$

For gas-dominated flow (X < 1):

$$\varphi^2 = 1 + C\frac{1}{X} + \frac{1}{X^2}$$

Where C is an empirical constant determined by flow characteristics and pipe geometry.

Typical C Values:

- C = 20 for smooth pipes.
- C = 12 for rough pipes.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Advantages

Simple Implementation:

Based on readily measurable parameters (mass flow rates, densities).

Broad Applicability:

• Can be applied to a wide range of two-phase flow scenarios.

Validated Framework:

Widely used and validated for horizontal and near-horizontal pipes.

Limitations

Empirical Basis:

• Requires empirical constants (C) that may not generalize across all systems.

Limited to Two-Phase Flow:

• Cannot be extended to three-phase or highly transient flows.

Accuracy:

Assumes steady-state conditions and may not account for dynamic effects.
COLLEGE OF ENGINEERING - كلبة الهندسة

جامعة تكريت - Tikrit University

Applications

Oil and Gas Pipelines:

• Predicts pressure drop in gas-liquid transport systems.

Chemical Engineering:

• Designs multiphase reactors and flow systems.

Power Generation:

• Analyzes two-phase flow in condensers and boilers.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Example Calculation

Problem:

A horizontal pipe carries a gas-liquid mixture with the following properties:

- Liquid mass flow rate $(m'_1) = 5 \text{ kg/s}$
- Gas mass flow rate $(m'_g) = 2 \text{ kg/s}$
- Liquid density (ρ_l) = 1000 kg/m³
- Gas density $(\rho_g) = 5 \text{ kg/m}^3$
- Frictional pressure drop for liquid (ΔP_L) = 200 Pa/m

Find the two-phase pressure drop (ΔP_{TP}) assuming C = 20.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Solution:

Calculate X²:

$$X^2 = \frac{m_l^2 \rho_g}{m_g^2 \rho_l}$$

Substituting the values:

$$X^2 = \frac{5^2 \cdot 5}{2^2 \cdot 1000} = \frac{125}{4000} = 0.03125$$

Determine Flow Type:

 $_{\circ}$ X² < 1: Gas-dominated flow.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Calculate ϕ^2 : For gas-dominated flow:

$$\phi^2 = 1 + C\frac{1}{X} + \frac{1}{X^2}$$

Substitute C = 20 and X = $\sqrt{0.03125} \approx 0.1768$:

$$\phi^{2} = 1 + 20 \cdot \frac{1}{0.1768} + \frac{1}{(0.1768)^{2}}$$
$$\phi^{2} = 1 + 20 \cdot 5.655 + 31.887$$
$$\phi^{2} = 1 + 113.1 + 31.887 = 145.987$$

Calculate Two-Phase Pressure Drop:

$$\Delta P_{\rm TP} = \phi^2 \Delta P_{\rm L}$$

Substituting the values:

 $\Delta P_{TP} = 145.987 \cdot 200 = 29197.4 \text{ Pa/m}$

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University